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ExpDiff: Generating High-fidelity Dynamic Facial Expressions with

BRDF Textures via Diffusion Model
Yuhao Cheng, Xuanchen Li, Xingyu Ren, Zhuo Chen, Xiaokang Yang, Fellow, IEEE, Yichao Yan†

Fig. 1: An example of our dynamic facial expressions generated results. Given a neutral-expression mesh and texture maps as
input, our framework enables the generation of FACS-compliant expression meshes with pore-level dynamic BRDF textures
through expression text prompts, achieving physically-based photo-realistic rendering.

Abstract—3D face generation is a critical task for immersive
multimedia applications, where a key challenge is the joint
synthesis of expressive geometry and BRDF textures Existing
methods often struggle with geometric-textural coherence and
corresponding dynamic reflectance modeling. To overcome these
limitations, we present ExpDiff, a framework that generates
expression meshes and dynamic BRDF textures from a single
neutral-expression face. Our method employs an attention-based
diffusion model to learn the semantic transition across expres-
sions. To ensure correspondence between geometry and texture,
we introduce a unified representation that explicitly models
geometric-textural interaction, which is encoded into a shared
latent space by models pre-trained on a vast dataset for strong
generalization. To achieve semantically coherent and physically
consistent generation, we propose to guide the denoising direction
with specially designed textual prompts. We further construct
two novel dynamic expression datasets, J-Reflectance, for ultra-
high-quality assets, and FFHQ-BRDFExp for diverse identities,
both of which are publicly released to advance the community.
Extensive experiments demonstrate our method’s superior per-
formance in photo-realistic facial expression synthesis. Project
page: https://cyh-sj.github.io/expdiff/.

Index Terms—Expression generation, Facial mesh, BRDF Tex-
tures, Diffusion models

I. INTRODUCTION

3D face generation is an important task in human-centric
multimedia applications. As the demand for high-fidelity
digital humans continues to rise across immersive virtual
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environments [1]–[3], including film, VR/AR, and gaming, the
need for high-quality facial assets has become increasingly
critical. To achieve vivid facial animation and photo-realistic
rendering under varying lighting conditions, the detailed ex-
pression meshes that conform to the Facial Action Coding
System (FACS) [4], along with corresponding high-quality
dynamic BRDF textures, such as albedo, roughness, specular,
and normal maps, are typically required.

In industrial pipelines, creating dynamic expressions and
textures typically involves capturing multiple facial expres-
sions with the LightStage [5], [6], followed by photometric
techniques to produce BRDF assets [7]. These scans are
then refined through complex and time-consuming registra-
tion processes, during which skilled artists manually process
expression meshes and corresponding UV texture maps. This
procedure is not only labor-intensive and costly but also
difficult to scale. Even though some methods [8]–[10] have
been proposed for automatic registration, it is still challenging
to acquire film-level dynamic facial assets and inevitable to
capture multiple expressions. This motivates the development
of fully automated frameworks that can synthesize expression
meshes and dynamic BRDF textures directly from a single
neutral-expression input, without relying on capture-based
pipelines.

However, few works have directly addressed this challeng-
ing task. The current approaches primarily focus on two kinds
of research: expression mesh generation and BRDF texture
generation. 1) Expression mesh generation typically aims to
produce meshes with specific expressions from a neutral facial
model. A common approach leverages 3D Morphable Models
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(3DMM) [11]–[24] to achieve linear expression generation.
However, these approaches lack the representation capacity to
capture fine-grained identity-specific variations and detailed
expression meshes. To overcome the expression rigidity caused
by linear representations, some methods [25]–[28] employ
non-linear techniques, such as auto-encoder-decoder and dif-
fusion models, which can generate relatively more diverse and
realistic facial animations. Other approaches [29]–[32] use
landmarks as guidance for mesh generation, but the overly
coupling between landmarks and expressions often limits their
ability to preserve personal characteristics across individuals.
Moreover, these approaches focus primarily on expression
generation on geometry, neglecting the modeling of dynamic
BRDF textures. 2) BRDF texture generation aims to produce
multi-channel consistent textures and can be categorized into
two main approaches. A kind of approaches [33]–[39] trains
transfer networks to infer albedo, normal, roughness, and
specular textures from a base texture. However, their perfor-
mances are often limited by the scale of training data, which
impairs generalization to unseen identities. Another kind of
approach [40], [41] utilizes inverse rendering for BRDF tex-
ture reconstruction, but the incomplete disentanglement of
illumination greatly affects the quality of textures. Moreover,
both types of methods focus predominantly on the neutral
expression, overlooking the dynamic texture changes that arise
with expression-dependent deformations.

Certainly, there are a few works that have attempted to
jointly synthesize facial expressions and dynamic BRDF tex-
tures. TBGAN [42] utilizes GAN to simultaneously generate
shapes and textures for dynamic expression generation, while
the coupling of expression and identity makes it difficult to
generate different expressions while preserving identity. Li
et al. [43] first propose generating blendshapes and corre-
sponding BRDF textures from a neutral scan, and Chandran
et al. [44] propose a semantically controllable model for
expression generation. However, these methods do not fully
model the mutual dependencies between geometry and texture,
leading to misalignments between texture and geometric defor-
mations in the generated expressions. Besides, these methods
ignore the dependencies among different expressions within
the FACS, which results in inconsistent local correspondences
across different expressions of the same individual, particularly
in sensitive facial regions.

Based on the analysis, we argue that modeling the intrin-
sic correlations between geometric deformations and textural
variations can support the development of 3D facial expression
generation. In this paper, we propose a unified framework
for jointly synthesizing dynamic facial expressions and BRDF
textures. As shown in Fig. 1, the framework takes as input
a subject’s neutral-expression mesh and textures, and outputs
corresponding expression meshes with BRDF textures. To fa-
cilitate correspondence learning, we unify the representation of
geometry and texture by rendering position maps in the same
UV space as the texture maps. Both of them are then encoded
into a shared latent space using a pre-trained variational au-
toencoder VAE [45]. To ensure geometric-textural coherence,
we propose a hybrid attention-based diffusion architecture
that jointly models the bi-directional correspondence between

geometric deformations and BRDF spaces, achieving multi-
channel consistency in both textures and geometry. Moreover,
a textual semantic-guided training paradigm is introduced to
enforce local consistency, explicitly capturing cross-region
relationships through textual constraints to maintain coherent
spatial deformation across distinct facial regions.

Furthermore, a key bottleneck in advancing this field is the
lack of publicly available, high-quality datasets that capture
dynamic facial expressions with detailed reflectance infor-
mation. To bridge this gap, we introduce J-Reflectance, the
first ultra-high-fidelity facial dataset, containing native 8K-
resolution BRDF texture maps and high-quality expression
meshes, with all assets undergoing manual retopology by
professional artists with submillimeter geometric accuracy, to
advance facial synthesis research. Additionally, to mitigate
identity diversity limitations, we construct FFHQ-BRDFExp
by extending the FFHQ-UV dataset into a dynamic BRDF
format. This enhanced dataset maintains photometric con-
sistency while incorporating realistic expression variations,
enabling large-scale perceptual and generative studies. Exten-
sive qualitative and quantitative experiments demonstrate that
our method significantly outperforms previous state-of-the-art
techniques in both expression synthesis and dynamic BRDF
generation.

The main contributions are summarized as follows:

• We present a framework for the consistent facial expres-
sion meshes and corresponding dynamic BRDF texture
synthesis from a facial model in neutral expression.

• We propose an attention-based diffusion model to capture
the relationship between geometry and textures, as well
as inner textures, ensuring consistent facial generation.

• We introduce a semantic-aware guidance that leverages
text prompts to establish correlations across facial re-
gions, achieving cross-expression consistency.

• We present publicly available, high-quality, large-scale,
dynamic BRDF facial datasets.

II. RELATED WORKS

A. 3D Expression Generation

3D expression generation is an important task in face
modeling, which aims to output facial expression mesh and
texture that conforms to the FACS system for subsequent facial
binding or blendshape production, bringing vivid facial ani-
mation to the face. Early facial expressions were obtained by
scanning different facial expressions, such as through camera
arrays [27] and lightstage [5], [6] using MVS [7], [46], depth
camera [47] reconstruction of point clouds to obtain facial
geometry, and then obtaining faces with different expressions
through subsequent post-processing such as retopology [12],
[48]–[50]. However, such algorithms face the high probability
of failure of multiple scans and face retopology under com-
plex and extreme expressions. Automated facial expression
generation is imperative to solve the problem of batch facial
expression generation. Subsequent facial expression generation
can be roughly summarized as parameterized face models and
landmark-guided expression generation methods. The earliest
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Fig. 2: Overview of our proposed ExpDiff. Given neutral models and expression models, we first represent them in the unified
representations and then project them into the latent space through a frozen encoder trained on a large-scale dataset. Then,
we propose an attention-based diffusion model for expression asset generation. The textual prompts are encoded by CLIP to
obtain semantic information, leading the denoising direction of the diffusion process.

parameterized face model [11]–[16] used PCA to learn low-
dimensional features of the face from a large number of face
scans, decoupling identity and expression into different facial
signals, and was able to use expression parameter changes to
achieve facial expression changes. Subsequent methods have
also been extended to facial texture and reflection texture
learning [51]–[53]. However, limited by linear representation,
such methods can only produce fixed expression offsets and
cannot represent personalized expressions. Another type of
method [29]–[32] uses facial landmarks to guide the genera-
tion of facial mesh displacement to achieve expression genera-
tion. For example, these works use GAN [54], [55], VAE [45],
and diffusion models [56] to achieve facial expression gen-
eration, but the acquisition of landmarks is not completely
cost-free and is hard to adapt to novel faces. In summary,
the above works mainly focus on the structural guidance of
facial meshes, but cannot extract high-quality facial expression
meshes that meet the FACS to serve the subsequent multimedia
development. In addition, they cannot model high-quality
dynamic reflection maps. The most similar works to ours are
Li et al. [43] and Chandran et al. [44], which can generate
scans and high-quality maps of different expressions. However,
they only consider the separate modeling of mesh and map,
without considering the mutual connection between geometry
and texture to promote the generation of facial expressions, nor
the correlation and consistency of different expressions. Our
work aims to exploit the correlation between geometry and
texture to generate expression changes that conform to facial
features, and is able to generate expressions with consistent
changes in texture geometry.

B. BRDF Texture Generation

To achieve physically based rendering, the industry typically
employs LightStages to acquire facial reflectance properties
through spectral separation of specular/albedo components.

Recent research efforts towards cost-effective acquisition focus
on neutral BRDF estimation. AlbedoMM [51]–[53] first used
3DMM to predict albedo, though it remained limited in quality
due to its linear representation. Subsequently, AvatarMe [33]
and AvatarMe++ [34] leveraged texture transfer networks for
BRDF parameter regression, FitMe [40] and ID2Albedo [36]
adopted StyleGAN-encoded [55] texture priors for identity-
consistent mapping, while Relightify [35] advanced texture
inpainting through diffusion models. Recent extensions like
MoSAR [41] incorporated semi-supervised learning for aux-
iliary maps (ambient occlusion/translucency) synthesis, and
ID2Reflectance [38] introduced identity-aware fusion net-
works for multi-channel reflectance generation. In contrast to
these expression-static approaches, our framework explicitly
models dynamic reflectance induced by expression-dependent
wrinkle formation and micro-geometric pore compression ef-
fects, establishing novel correlations between geometric defor-
mation fields and non-linear reflectance variations.

C. Diffusion Models for 3D Facial Models

The diffusion model [57] has emerged as one of the most
powerful generative models in recent years, achieving target
generation by iteratively denoising Gaussian noise. While
their multi-step sampling procedure inherently suffers from
computational latency, subsequent research has focused on
optimizing the noise prediction schedule to accelerate infer-
ence [58]–[60]. Owing to their exceptional synthesis quality,
the diffusion model has been widely applied to facial do-
mains for tasks including 3D face reconstruction [61]–[63],
texture synthesis [37], [64], facial animation [65], [66], and
stylization [67], [68]. These existing implementations typically
process isolated modalities, e.g., latent codes [65], [66], tex-
ture maps [37], [64], or 3DMM coefficients [69], guided by
auxiliary signals to generate target facial attributes. However,
these approaches are typically limited to a single domain,
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Fig. 3: The distribution visualization of our representations.

without explicitly modeling the bidirectional dependencies
between geometric deformations and reflectance variations,
which can result in inconsistencies. Our work pioneers a
joint diffusion framework that simultaneously models dynamic
facial mesh deformations and expression-correlated BRDF
material transitions, achieving photo-realistic and geometry-
texture corresponding expression synthesis.

III. METHODS

Our proposed framework ExpDiff, as illustrated in Fig. 2,
aims to generate N dynamic expression models {En}Nn=1 with
corresponding BRDF textures (albedo maps, specular maps,
roughness maps, and normal maps) {An,Sn,Rn,Nn}Nn=1.
The input to the framework is a neutral-expression facial
model M = {(V, F ) | V ∈ Rnv×3} and its corresponding
texture T, where F is the pre-defined fixed topology of
facial models and nv is the number of vertexes. A textual
expression code e is also provided as the condition. To this
end, we first review the diffusion model used for high-quality
generation (III-A). To effectively learn the correspondence
between geometry and texture, we explain how we represent
facial models and BRDF texture maps in similar forms (III-B).
We then introduce our attention-based diffusion model with
the guidance of textual prompts to generate dynamic expres-
sions (III-C). Finally, we present the method of high-quality
facial assets extraction (III-D).

A. Preliminary on Diffusion

The diffusion probabilistic model has recently gained pop-
ularity for image generation, which defines a forward Markov
process to learn the Gaussian noises added to the input data in
T steps. Specifically, the random Gaussian noise ϵ ∼ N (0, I)
is sampled and added to the input x0 at the t steps to get the
final noisy target xT :

q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) , (1)

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (2)

where βt is used to control the quality of noise. To gradually
denoise the random noisy target, the diffusion model is to learn
the reverse Markov process by a network θ:

pθ (x0:T ) = p (xT )

T∏
t=1

pθ (xt−1 | xt) . (3)

The optimization target is to minimize the learned noise ϵθ
and the added noise ϵ in every step t by:

LDiff = Et,ϵ

[
w(t) ∥ϵθ (xt; t)− ϵ∥22

]
, (4)

where w(t) is a weighting function. After training the diffusion
model, a random noise input can be progressively denoised to
generate meaningful images. In this paper, we leverage the
powerful capabilities of diffusion models to generate high-
quality facial expressions and dynamic BRDF textures.

B. Facial Model Representation

3D facial models primarily represent geometry through
meshes, while reflection properties are defined with UV BRDF
texture maps. However, meshes rely on discrete vertex coor-
dinates and topological face connections, whereas textures are
image-based representations, making it challenging to learn
relationships between geometric deformations and reflectance
variations. To address this fundamental issue, we propose a
unified representation that encodes both dynamic geometric
displacements and texture changes in a consistent format, fa-
cilitating joint learning of their relationships under expression
variation.

First, we establish a unified representation of textures and
geometry. Instead of sampling textures onto vertices, which
severely degrades texture resolution, our approach encodes
meshes as image-based structures according to their topology.
Following prior works [66], [70], we construct position maps
P by projecting per-vertex relative displacements through
rendering. Considering the high dimensionality of images, it
is challenging to directly train a diffusion model on an image-
level dataset. Furthermore, the correlations between reflectance
and geometric properties with Vanilla position maps and
texture maps are not explicit. Therefore, we introduce a pre-
trained autoencoder-decoder that maps them into a shared
latent space to better explore the implicit relation between
geometry and reflectance. Specically, we leverage the VAE E
in Stable Diffusion [71] to process both geometry and texture
data, achieving a unified representation as:

zP, zT, zA, zS, zR, zN = E(P,T,A,S,R,N), (5)

where E is trained on large datasets and can capture both
high-frequency and low-frequency image details accurately in
the latent space. It should be noted that although reflectance
texture in UV-space is fundamentally different from natural
images, the encoder E pre-trained by a large-scale dataset
demonstrates sufficient representational capacity to faithfully
reconstruct the textures without a fine-tuning process.

To evaluate the effectiveness of the representation method,
as shown in Fig. 3, we cluster the latent codes with T-SNE for
different channels of BRDF textures and various expressions
across 10 target individuals, respectively. Fig. 3 (a) reveals
distinct distribution patterns of reflectance texture channels in
the latent space, indicating effective learning of their inter-
channel relationships. Fig. 3 (b) demonstrates that expressions
with distinct semantics form separate clusters, while semanti-
cally similar expressions show closer proximity in the latent
space, confirming the representation’s capacity to capture
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Fig. 4: Overview of our attention module. The joint atten-
tion ensures cross-channel consistency among BRDF textures,
while cross-attention establishes cross-modal correspondence
between geometric deformations and texture variations.

expression-level correlations, demonstrating the effectiveness
of our proposed consistent representation.

C. Expression Generation Diffusion Model

Training. After encoding geometry and reflectance attributes
in a unified latent space, our goal is to generate target expres-
sion models {En}Nn=1 along with their corresponding textures
{An,Sn,Rn,Nn}Nn=1. Notably, facial expression variations
adaptively manifest through both geometric deformations and
textural variations, involving both shared and modality-specific
patterns. For example, jaw movement causes large-scale shape
displacement with little change in texture, while wrinkle
formation appears mostly in texture maps due to limitations
in low-poly meshes. Moreover, to ensure physical plausibility,
the generated BRDF channels (albedo, roughness, specular,
normal) must remain semantically consistent throughout the
expression sequence. To address these challenges, we propose
an attention-based diffusion model that captures inter-modal
correspondences and channel-wise dependency for dynamic
3D facial asset synthesis.

As illustrated in Fig. 4, our framework adopts a dual-
attention architecture composed of two modules: a joint at-
tention module and a cross-attention module. The joint at-
tention module enforces consistency across BRDF channels
by modeling inter dependencies among reflectance textures.
The cross-attention module aligns geometric deformation with
expression-driven texture variations, facilitating coordinated
synthesis. This dual attention design enables the generation
of photometrically consistent BRDF texture maps and cor-
responding mesh deformations under expression dynamics.
Additionally, to capture the semantic interplay between dif-
ferent expressions, we employ a CLIP [72]-guided approach
for model denoising. Each expression is annotated with a
corresponding text description, which is encoded into a se-
mantic embedding using CLIP’s pretrained text encoder C.
This embedding conditions the denoising model, encouraging
the predicted noise to align with the expression semantics.

In the training process, the texture latent zT is repeated
3 times, and then they are concated with the position latent
zP as neutral latents. The expression latents {zA, zS, zR, zN}
are added random Gaussian noise as Eq. (2). Following, the
neutral latents and the noisy expression latents are concated as
the input of the attention-based diffusion model. The training
objective can be formulated as follows:

L = Eϵ∼N (0,1),C(e),t

[
∥ϵ− ϵθ (wt, t, C (e))∥22

]
. (6)

Dataset BRDF. #ID Exp. Res. Acqu. Regis. Avai.

FaceScape [74]

%

847 20 4K Capt. Auto !

Faceverse [27] 128 21 2K Capt. None !

MimicMe [75] 4700 20 1K Capt. Auto !

Multiface [76] 13 65 1K Capt. Auto !

RealFaceDB [33]

!

200 7 4K Capt. Auto %

ICT-FaceKit [26] 99 26 4K Capt. Auto %

FFHQ-UV-Intrinsics [41] 10K 1 1K Gene. Auto !

J-Reflectance (Ours) 100 56 8K Capt. Manual !

FFHQ-BRDFExp (Ours) 10K 56 4K Mixed. Auto !

TABLE I: Existing 3D face datasets. The proposed J-
Reflectance dataset has the highest quality and is publicly
available, surpassing existing 3D expression datasets.

This approach offers two advantages: 1) It effectively guides
the model to learn coordinated variations between expressions
and textural details through semantic alignment. 2) By leverag-
ing the semantic space of CLIP [72], it enables the generation
of novel expressions beyond training prompts.
Inference. At inference time, the neutral-expression position
map and texture map are first injected with noise as Eq. (2)
and then iteratively denoised under the guidance of expression-
specific textual prompts, producing expression-aware latent
codes. {zPn , zAn , zSn, z

R
n , zNn }Nn=1. These latent codes are sub-

sequently decoded by the VAE decoder D to reconstruct the
corresponding position maps and BRDF textures as:

Pn,An,Sn,Rn,Nn = D(zPn , z
A
n , zSn, z

R
n , zNn ), (7)

where we can sample mesh En from the position map Pn and
directly obtain the low-resolution BRDF maps.

D. High-quality Assets Generation

Due to the low resolution of Stable Diffusion [71], it is un-
able to directly generate pore-level detail, which limits photo-
realistic rendering. To enhance texture fidelity, we incorporate
a super-resolution module based on Real-ESRGAN [73] to
upsample the generated BRDF maps. However, direct upsam-
pling often oversmooths dynamic features such as wrinkles. To
preserve these high-frequency details, we adopt the difference
map as input to enhance the perception of wrinkles. Take
albedo An as an example, the difference map Wn can be
obtained by interpolating between the generated expression
Dn and the input texture D0 as follows:

Wn = 1/(1 + exp(−Dn/(D0 + 1−8))). (8)

Besides, the diffusion model will introduce geometric bias
into the position maps that cannot faithfully invert expres-
sions. Therefore, we propose a directional mesh reconstruc-
tion strategy. That is, we adopt the difference between the
target position map Pn and that in the “Neutral Expression”
PNeutral as guidance, the final dynamic expression meshes
can be extracted via:

E′
n = M + f(Pn − PNeutral|F ), (9)

where f(·|F ) is a mesh recovery method with topology F .

IV. DATASET

A. Existing 3D facial expression Dataset

High-quality expression datasets are essential for dynamic
face generation. As the comparisons illustrated in Tab. I,
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Fig. 5: Overview of our capture pipeline and datasets. (a) We utilize a Light Stage system to capture high-resolution facial
images and employ skilled artists to meticulously process the data to ensure film-quality assets. (b) We showcase an identity’s
expression results, showing muscle-level geometry and BRDF textures with pore-level details, which can integrate seamlessly
with the relighting applications. (c) We display the examples of our FFHQ-BRDFExp dataset.

early datasets primarily focus on increasing the variety of
identities and expressions. However, they lack facial BRDF
assets that meet physically based rendering standards, such
as albedo, specular, roughness, and normal maps, to achieve
photo-realistic rendering under varied lighting conditions. Sev-
eral datasets, e.g., RealFaceDB [33] and ICT-FaceKit [26],
use Light Stages to capture BRDF textures. However, these
datasets employ automated registration strategies, resulting in
relatively lower quality, especially in extreme expressions.
Moreover, due to the high cost of capture systems, these
datasets have not been completely open-released, limiting
advancements in expression generation. MoSAR [41] proposes
a BRDF dataset in static expression, while lacking dynamic
variations in both meshes and textures. To overcome these
limitations, we propose the J-Reflectance dataset. Compared
to existing works, our dataset has several advantages: 1) 8K
high-resolution textures, 2) Artist-crafted meshes and textures,
3) Diverse identities balanced in gender and age, 4) Publicly
available. These advantages ensure high quality and diversity
of the dataset, supporting the advancement of the field.

B. Data Acquisition and Registration

Capture. We capture 3D facial expressions with a Light
Stage. Our system consists of 128 individually controlled
lights, capable of synchronized polarized lighting within 10ms.
The capture system comprises 53 calibrated cameras that
can capture 6K-resolution raw images. To ensure consistent
topology, we mark subtle points on faces where non-grid
ICP often struggles to maintain geometric precision, such as
cheeks, eyes, and mouth. Actors are instructed to perform 32
expressions with maximum intensity to show facial muscles
and wrinkles. Each expression is illuminated with 15 types of
polarized lighting to calculate BRDF textures.
Processing. First, high-resolution facial scans exceeding 10
million polygons and 8K-resolution textures are produced with
Agisoft Metashape [77]. Then, we employ manual retopology
crafted by artists with Wrap4D [78] for ultra-high-quality
mesh acquisition. In this pipeline, artists first create 32 AUs
for the same template. To ensure topological consistency
among different expressions, the markers are aligned with
the template face to avoid vertex and UV drift, allowing

our registration precision within 0.1mm. Subsequently, the
32 expressions will be processed into 56 FACS-compliant
expression units manually. For UV textures, we first merge
facial texture with templates, then manually remove high-
frequency noise from the eyes, mouth, and nostrils. Through
these steps, our facial models and BRDF textures achieve film-
level precision, as shown in Fig. 5.

C. Extend Dynamic Expression to FFHQ-UV
Our dataset boasts extremely high precision, yet due to

computer ethics and identity confidentiality requirements, it is
essential to fully review the applicants’ qualifications before
releasing data to them, which somewhat constrains subsequent
research. To foster advancements of community, we are in-
spired by FFHQ-UV [79] and MoSAR [41] to construct a high-
quality dynamic dataset with the publicly available data. First,
we align FFHQ-UV with our topology automatically. Since
FFHQ-UV possesses consistent topology and UV mapping
in the neutral expression, it can be accurately registered to
our model. We then blend the aligned textures with our
textures. Initially, we apply a super-resolution approach to
these textures, followed by automatic rendering based on
skin tone and identity, following ID2Reflectance. Blending
algorithms are employed to enhance pore-level skin details
while preserving identity characteristics. Similar techniques
are applied to normal, roughness, and specular maps. Finally,
we process these models through our ExpDiff to synthesize
dynamic BRDF textures and meshes to construct the dynamic
expression dataset, referred to as FFHQ-BRDFExp.

V. EXPERIMENTS

In the experiments, we first introduce the implementation
details. Then, we showcase our generated assets and rendering
results under different lights. Afterwards, we compare our
ExpDiff with the current SOTAs qualitatively and quantita-
tively. Finally, we conduct ablation studies to evaluate the
effectiveness of our proposed modules.

A. Implementation Details
In our experiments, we use 90 identities in J-Reflectance

for training, and the rest 10 identities for evaluation. All facial
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Fig. 6: We showcase some dynamic BRDF textures and rendering results of faces from different datasets, which are from
J-Reflectance, 3DScanStore, and generated from Dreamface. Please Zoom In for detailed observation.

Fig. 7: Qualitative comparisons for 3D expression mesh gen-
eration. The meshes in the 1st row are from 3DScanStore, and
those in the 2nd row are from J-Reflectance.

meshes are aligned to the template mesh and normalized to the
range of [-1, 1], maintaining variability of face shape. In the
diffusion training process, we use images with a resolution
of 512 × 512 and set the size of the latent embedding to
1024. The model is optimized using the Adam optimizer [80]
with a learning rate of 1e− 5, trained for 50000 steps with a

Fig. 8: Qualitative comparisons with current SOTAs for dy-
namic texture generation.

total batch size of 128. All the implementations are based on
PyTorch and set up on 4 Nvidia A6000 GPUs.

B. Generated results

Fig. 6 presents generated expression assets with rendering
results under varied illumination conditions. The input faces
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Fig. 9: Qualitative comparisons for BRDF texture generation.
Please zoom-in for detailed observation.

Method Geometry Texture
FVD↓ PSNR↑ SSIM↑ LPIPS↓

3DMM 0.255 37.607 0.973 0.040
SDFM [44] 0.473 37.980 0.962 0.070
Ours 0.214 39.057 0.983 0.032

TABLE II: Quantitative comparisons towards geometry and
texture with several expression generation methods. The best
results are labeled in bold.

are drawn from three distinct sources: the test set of J-
Reflectance, the 3DScanStore dataset, and synthetic identities
generated by DreamFace [37]. Our ExpDiff can synthesize
expressive expressions with high-fidelity multi-channel consis-
tent BRDF textures, which are beneficial for physically-based
rendering, also demonstrating our method’s generalization to
unseen identities.

C. Comparisons

Qualitative Comparisons. We conduct qualitative compar-
isons between our proposed ExpDiff and current SOTAS,
i.e., 3DMM and SDFM [44], in terms of both expression
geometry and dynamic textures. We retrain the models by
their released code on our dataset for fair comparisons. As
shown in Fig. 7, 3DMM is capable of producing generic facial
expressions, but fails to capture identity-specific expression
nuances and introduces interpenetration artifacts. Although
SDFM can better preserve identity-specific expressions, it fails
to generate semantically plausible results for facial geometries
deviating from training distributions. In contrast, our method
leverages a carefully designed facial representation, enabling
robust generalization across diverse identities while preserving
semantic expression fidelity.

As shown in the texture comparisons of Fig. 8, 3DMM fails
to generate expression-dependent textures and often produces
overly smooth or blurry appearance. While SDFM can gen-
erate dynamic wrinkles, it overlooks the mutual dependencies
between geometric deformations and texture variations, lead-
ing to insufficient expression-specific details in critical regions
such as the corners of the mouth and the bridge of the nose. In

Method Shape Texture
FVD↓ PSNR↑ SSIM↑ LPIPS↓

w/o Attention 0.240 38.095 0.966 0.040
w/ Onehot 0.322 37.397 0.969 0.035

Ours 0.214 39.057 0.983 0.032

TABLE III: Ablation studies on attention modules and the
guidance of textual prompts.

Fig. 10: The evaluation of semantic learning. (a) The interpo-
lated generation results between “Face Compression” and “Jaw
Open”. (b) Novel expression results, which do not appear in
training. Both results show the generalization of our ExpDiff.

contrast, our framework achieves semantically consistent facial
expression synthesis with wrinkle-level textural fidelity. The
qualitative comparisons effectively demonstrate the superior
performance of our proposed ExpDiff over existing SOTAs.

Our framework is capable of generating expression-
dependent BRDF textures given a dynamic facial input and
its corresponding textual description. To validate the effec-
tiveness of the capability on BRDF generation, we con-
duct comparisons with SOTA methods (SwitchLight [81]
and ID2Reflectance [38]. As the results show in Fig. 9,
ID2Reflectance produces over-smoothed results, where fa-
cial details are poorly preserved. SwitchLight can maintain
corresponding dynamic wrinkles in albedo, specular, and
roughness maps, but it lacks high-frequency details in the
normal map, limiting its ability for pore-level high-fidelity
rendering. In contrast, our method maintains sharper micro-
details (e.g., wrinkles and pores) across albedo and reflectance
maps, achieving superior photo-realistic rendering results,
demonstrating our effectiveness in high-fidelity BRDF texture
synthesis.
Quantitative Comparisons. We also evaluate the effective-
ness of ExpDiff quantitatively, with the geometric metric
of Facial Vertex Distance (FVD), which represents the L2
distance between corresponding meshes, and the widely-used
textural metrics, i.e., PSNR, SSIM, and LPIPS [82], as shown
in Tab. II. It shows that our proposed ExpDiff can generate
Identity-specific expression meshes and dynamic textures,
achieving superior generation results compared to traditional
3DMM and current SDFM.
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D. Ablation Study

We investigate the effectiveness of attention modules and
textual prompts, as depicted in Tab. III. The “w/o attention”
removes the attention mechanisms between shape-texture and
inter-texture relations during training. This leads to qual-
ity degradation due to insufficient cross-modal correlation
learning. The “w/ one-hot” indicates that we replace CLIP’s
semantic space with randomly generated embeddings for con-
ditioning, resulting in a significant performance decrease in
both texture and geometry synthesis. The combination of them
achieves the highest quantitative metrics, demonstrating the
effectiveness of the proposed components.

Moreover, we conduct experiments to evaluate the effec-
tiveness of semantic interpolation. Leveraging CLIP’s semanti-
cally structured text space, our method enables seamless linear
interpolation between geometric and textural attributes. As
shown in Fig. 10 (a), ExpDiff achieves smooth transitions from
the “facial compression” expression to “jaw open” expression,
where wrinkles on the nose and chin vary corresponding to
the geometric deformations. Furthermore, CLIP’s semantic
space permits controllable extrapolation as demonstrated in
Fig. 10 (b), where we illustrate expressions absent from the
training data like “nose right” and “brows left”.

VI. CONCLUSION

In this paper, we propose ExpDiff, a generalized and
effective framework for generating expression-specific fa-
cial meshes and dynamic BRDF textures. Unlike previous
approaches, ExpDiff better captures both inter- and intra-
relations between geometry and BRDF textures, thereby en-
abling the consistent generation of high-fidelity facial assets.
Our framework leverages an attention-based diffusion model
conditioned on textual prompts to jointly synthesize geometry
and textures for diverse facial expressions, ensuring semantic
and structural consistency. To enhance alignment and general-
ization, we introduce a unified representation for meshes and
textures, which is further encoded through a VAE trained on
a large-scale dataset. Furthermore, we incorporate a super-
resolution module and a post-processing pipeline to refine the
generated assets, improving overall visual quality. Extensive
experiments demonstrate the effectiveness and generalization
of our proposed method, showing our superior performance
over other SOTAs. In addition, we release two high-quality
expression datasets to facilitate the research community. Over-
all, ExpDiff offers a robust solution for text-driven 3D facial
expression generation, contributing to the development of
multimedia applications.
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